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PREFACE 

The California Energy Commissionôs (CEC) Energy Research and Development Division 

manages the Natural Gas Research and Development Program, which supports energy-related 

research, development, and demonstration not adequately provided by competitive and 

regulated markets. These natural gas research investments spur innovation in energy 

efficiency, renewable energy and advanced clean generation, energy-related environmental 

protection, energy transmission and distribution and transportation.  

The Energy Research and Development Division conducts this public interest natural gas-

related energy research by partnering with RD&D entities, including individuals, businesses, 

utilities and public and private research institutions. This program promotes greater natur al 

gas reliability, lower costs and increases safety for Californians and is focused in these areas: 

¶ Buildings End-Use Energy Efficiency. 

¶ Industrial, Agriculture and Water Efficiency 

¶ Renewable Energy and Advanced Generation 

¶ Natural Gas Infrastructure Safety and Integrity.  

¶ Energy-Related Environmental Research 

¶ Natural Gas-Related Transportation. 

Demonstration of a Multi -Analytic Risk Management Tool for the California Pipeline Industry is 

the final report for the Demonstration of a Multi -Analytic Risk Management Tool for the 

California Pipeline Industry project, grant number PIR-15-016, conducted by DNV GL, a global 

quality assurance and risk management company, with the assistance of the University of 

California Los Angeles (UCLA) as a sub-contractor. The information in this report contributes to 

the demonstration of an advanced risk assessment method as a part of the Energy 

Commissionôs Natural Gas Pipeline Safety and Integrity Management Research initiative. 

For more information about the Energy Research and Development Division, please visit the 

CECôs research website (www.energy.ca.gov/research/) or contact the CEC at 916-327-1551. 
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ABSTRACT 

Maintaining natural gas pipeline safety involves making decisions based on multiple sources of 

information. Integrating information from these diverse sources ï real-time data from sensors, 

older data stored in databases, incident reports, and expert knowledge ï into a single 

framework can be very difficult. To address this challenge, DNV GL created a Multi-Analytic 

Risk Visualization method to combine information, regardless of its source or degree of 

uncertainty, to help comprehensively anticipate, prioritize, and manage threats to natural gas 

pipeline systems in California. 

This report provides the activities for modeling two threats chosen by the projectôs industry 

partner, Southern California Gas Company. DNV GL, University of California, Los Angeles 

(UCLA) and Southern California Gas Company selected two pipelines to test the  MARVÊ 

method and identif ied the data needed for the models. DNV GL then developed an external 

corrosion Bayesian (a type of statistical model) threat model and UCLA developed a Bayesian 

third-party damage threat model for gas transmission pipelines. The industry partnerôs 

confidential data was used for the models to identify the leading indicators: parameters that 

should be monitored to control the threat.  

Keywords : Bayesian Network, cathodic protection, disbondment, external corrosion, 

forecasting, in-line inspection, Markov process, MARVÊ, Monte Carlo, natural gas, pipeline, 

Poisson process, risk assessment, sensitivity analysis, statistical analysis, third party damage 

Please use the following citation for this report:  

Ayello, Francois, Narasi Sridhar, Ali Mosleh, and Chris Jackson. 2016. Demonstration of a Multi -

Analytic Risk Management Tool for the California Pipeline Industry. Publication number: 

CEC-500-2018-023. 
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EXECUTIVE SUMMARY  

Introduction  
Uninterrupted natural gas supply is vital to Californiaôs economy. Nearly one-third of the stateôs 

total energy demand is met by natural gas , which is the main source of generating electricity 

and in 2012 accounted for about 43 percent of all generation. Californiaôs intrastate natural 

gas pipeline system consists of about 10,500 miles of onshore transmission pipeline in addition 

to gathering and distribution lines. Given Californiaôs reliance on natural gas, maintaining and 

preventing damage and assessing any risks to the pipeline infrastructure is critical. For 

example, the external corrosion of buried metallic on -shore pipes has been identified as a 

serious threat to the mechanical integrity of this infrastructure. Congressionally -funded 

research conducted between 1999 and 2001 determined that the corrosion -related cost 

associated with the transmission pipeline industry was about $5.4 billion to $8.6 billion a year. 

DNV GL, collaborating with the B. John Garrick Institute of Risk Sciences at the University of 

California Los Angeles and Southern California Gas Company, demonstrated a new risk 

management method for pipelines. This risk management method, the Multi-Analytic Risk 

Visualization (MARVÊ) method allows for more effective, systematic, and verifiable decision-

making using all the knowledge and data available to the pipeline company. Many risk 

assessment approaches are used by pipeline companies. However, as suggested by the 2016 

report by the Safety and Enforcement Division of the California Public Utility Commission, 

these risk models can be improved to reflect the failure probabilities more realistically, be 

transparent, and have common measures for comparison. An important aspect of improved 

risk models is a more defensible approach to estimating failure probabilities such as 

understanding failure mechanisms, integrating diverse knowledge of a pipeline system 

including internal and external expert knowledge, accounting for uncertainties in the data and 

automatically learning from sensors, past failures, near misses, and erroneous predictions. 

Project Purpose  
This project demonstrated the MARVÊ method to help anticipate, prioritize, and manage 

pipeline threats comprehensively to assess the safety and integrity of natural gas pipeline s in 

California. Although risk constitutes probability and consequence, the focus of the proposed 

project improves the probability aspect of risk. A Bayesian Network (a type of statistical 

model) approach is used to estimate the probabilities of failure.  This project (1) customized 

the existing Bayesian Network models for corrosion and mechanical threats to the California 

natural gas pipeline system, (2) demonstrated and validated the advanced risk assessment 

method by applying it to a natural gas pipelin e system of a major Californian pipeline 

company, and (3) transferred the knowledge gained by openly publishing and presenting the 

projectôs results and lessons learned to the industry, government and public sector. 

Project Results  
DNV GL demonstrated a threat model that has the ability to make threat predictions on a gas 

pipeline using industry data. The threat model or MARVÊ method uses software to show the 

sections of the pipeline on a map that are most at risk. DNV GL identified indicators that must 

be monitored to mitigate external corrosion, identified third party -damage probabilities, and 

created a method that identifies the most useful data using a cost -benefit analysis.  



 

2 

The pipeline industry currently uses many different method s for risk assessment, including 

qualitative to quantitative methods. Unfortunately, qualitative and semi -quantitative 

approaches, such as risk indexing, are impossible to validate and are not predictive. The fully 

quantitative approaches have too much reliance on in-line inspection results. Therefore, these 

probability threat predictions are inaccurate, especially for pipelines that cannot be inspected 

and verified. Also, many quantitative risk assessment methods require large amounts of data. 

The MARVÊ method developed in this project overcomes many of these limitations.  

The MARVÊ method connects causes to their effects through probabilistic models and data. 

Thus, the MARVÊ method is useful if there are many factors leading to a threat, including 

those that cannot be modeled by a single analytical model. This is the case for external 

corrosion of pipelines which is the result of a complex set of interactions between soil 

parameters, water, and pipeline coatings. If a single threat, such as fracture can be completely 

modeled analytically, then the MARVÊ approach is not needed. Even in such a case, the 

results of the analytical model can be integrated within the MARVÊ framework.  

Since the Bayesian method used in the MARVÊ method can update the probabilities based on 

new information when available, the MARVÊ probability estimation process can be started 

when only small amounts of data are available. The statistical sensitivity of the probability 

estimation to causative threat factors can be used to prioritize the collection of additional data. 

Since the MARVÊ method can be updated with new data, it can be integrated with sensors to 

perform real-time risk assessments. For example, third party damage sensors can be 

integrated with MARVÊ for continuous monitoring and evaluation of threats.  

The MARVÊ method also predicts and shows the results in a probabilistic distribution format 

with clear uncertainty ( that is, it generates all possible outcomes with corresponding 

probability). This is different from conventional modeling approaches that use deterministic 

values to provide narrowly defined results and ignore other possible outcomes.  

Southern California Gas indicated that the MARVÊ-based decision-making approach can help 

pipeline operators determine what data is most useful and answer questions such as ñWhat 

data would reduce uncertainty of threats the most?ò, ñWhat data should we gather first?ò and 

ñWhen do we have enough data?ò. 

Project Benefits  
The risk management method improves risk assessment by consolidating and integrating 

scattered expert knowledge and uncertain data to capture new failure processes. This new 

method will help pipeline operators better detect potential pipeline failures, and enable more 

effective decision-making regarding the pipeline failure  risks. Although the main benefits of the 

method are not quantifiable, based on the historical trends of protecting life, property and the 

environment and if the tool can prevent two incidents per year, it will save gas operators $12 

million annually. Southern California Gas has had a number of discussions about obtaining the 

tool and using the model for other pipelines. While a commercial product is not yet available, 

one is being developed. At this time, the model is provided as a service and is not being sold 

as a commercial software tool. However, there is interest by the recipient team in 

incorporating this in a suite of software tools and eventually selling it commercially.  
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CHAPTER 1:  
Project Purpose  and Approach  

Project Purpose  
Natural gas pipelines, which are essential to Californiaôs economy, are subject to a complex 

combination of threats that can affect pipeline safety and security . These threats can cause 

unanticipated pipeline failures that pose a danger to the public and cause economic hardship. 

Pipelines are subject to natural forces such as seismicity and soil movement, and are located 

in different terrains with varying topography, ground cover , and climates. In addition, t hey are 

often hidden from sight in crowded areas along with ot her utility assets that can encroach on 

them and interfere with their protection systems. While these pipelines transport oil or gas, 

they also carry impurities and corrosive substances such as hydrogen sulfide and carbon 

dioxide that can affect pipeline i ntegrity.  

A reliable pipeline safety and integrity management system requires a comprehensive risk 

assessment method to predict these dynamic and interactive threats. The overall goal of this 

project was to demonstrate an advanced risk assessment method that can comprehensively 

anticipate, prioritize, and manage pipeline threats to help ensure the safety and integrity of 

natural gas pipeline systems throughout the state . 

DNV GL has developed a risk assessment method called Multi-Analytic Risk Visualization 

(MARVÊ) specifically tailored for pipeline threat assessment. The risk assessments approach is 

probabilistic and calculations are performed using a Bayesian Network, also referred to in this 

report as Bayesian Belief Network. The Bayesian Network is created by identifying the complex 

cause-consequence relationships of multiple variables that lead to various pipeline failure 

modes and threats. Moreover, the method allows linking various types of knowledge, data, 

and failure modes in a quantitative and trans parent way. DNV GL has implemented and 

demonstrated the feasibility of the Bayesian Network method for a number of oil and gas 

pipeline companies around the world. To achieve the project goal, the specific project 

objectives are to:  

¶ Customize the existing corrosion and mechanical threats Bayesian Network models to the 

California natural gas pipeline system. 

¶ Demonstrate the advanced risk assessment method by applying it to a natural gas 

pipeline system with a major Californian pipeline company. 

¶ Transfer the knowledge gained by openly publishing and presenting the projectôs results 

and lesson learned to the industry, government and public sector.  

Bayesian N etwork Approach  
This project focuses on using a Bayesian Network method to model the probability of threats 

to pipelines. The pipeline risk management approaches can be grouped into four major 

categories:  

¶ Qualitative or semi-quantitative approaches such as, risk matrices, indexing systems, and 

bow-tie methods: These approaches are highly subjective, especially for assessing the 
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likelihood of failures and they do not adequately represent the complex interactions 

among causative factors. Most critically, they cannot anticipate failures which have not 

occurred. 

¶ Statistical data driven approaches such as, the traditional quantitative risk assessment 

methods: They tend to aggregate failure statistics so that the fundamental causative 

factors leading to failures are not known. They require a lot of failure data and are 

inadequate in predicting new failure modes. 

¶ Model-based approaches: These link input data to output performance through 

mechanistic or empirical models which are then combined with various sampling 

schemes, such as the Monte-Carlo technique, to derive probability of failures. Although 

such physics-based approaches are powerful, they require enormous computational 

power for some complex systems and are generally too slow for real-time risk 

management. 

¶ Hybrid approaches: These techniques combine elements of statistical, model-based, and 

expert-driven approaches. 

Among the hybrid approaches, the Bayesian Network approach, embedded in MARVÊ, is able 

to represent a complex interactive system in a graphical intuitive format. The basis of the 

Bayesian Network method is the capability of linking multiple causes and consequences 

through conditional probability relationships as illustrated in Figure 1.  

In this overly simplified example, the pH and chloride conce ntration ( for example, in a soil 

environment) are linked to the corrosion rate of steel through the conditional probability table 

and graphically represented as nodes in a network. An advantage of Bayesian Network method 

is that even if pH and chloride concentrations are not known precisely (represented by 50 

percent probability for two different ranges of these factors), the probability of corrosion rate 

can be estimated (upper part of Figure 1). A further advantage of the Bayesian Network is that 

if the corrosion rate is precisely known (for example, through inspection), the probabilities of 

pH and chloride concentration can be estimated by reverse inference using Bayes theorem 

(lower part of Figure 1). The conditional probability table shown in the figure  can be derived 

either from physics-based models or expert elicitation.  

Although Bayesian Networks have been used for quite some time in diverse fields, the 

application of the Bayesian Network model to pipeline risk management is new and has been 

pioneered by DNV GL (Ayello, Sridhar, Koch, & Jain, 2014) (Ayello, Guan, & Sridhar, Corrosion 

Risk Assessment Using Bayesian Networks ï Lessons Learned, 2016). The Bayesian Network 

for a pipeline threat is mo re complex for an external corrosion threat (Figure 2).   
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Figure 1: Simplified Example of a Bayesian Network  

 

Source: DNV GL 
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Figure 2: Bayesian Network  of External Corrosion Threat for a Pipeline  

 

Source: DNV GL 

A particular advantage of a Bayesian Network approach is that additional factors can be 

added, such as direct current stray current effects which were added to this Bayesian Network. 

The Bayesian Network is intuitive, graphical, and transparent enabling a variety of 

stakeholders to question and improve it. The probability distribution of any node can be 

compared to field data to demonstrate assumptions and update the model. A specific 

challenge in using such a complex Bayesian Network (and for that matter any risk assessment 

method) for a pipeline re quires entering location-specific data along 100ôs of miles of pipeline. 
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DNV GL has developed a tool to rapidly input pipeline data along a pipeline and to present the 

resulting probabilities along the pipeline in a visualizer. Another challenge is in presenting the 

results of a risk assessment to different stakeholders. High-level decision makers wish to 

obtain an overview of risk along a pipeline rapidly, for example, through color coded map 

regions. Technical experts wish to drill down into the model to examine data and model 

assumptions. Field personnel may wish to see the results of specific actions they take on 

calculated probabilities. DNV GL has developed MARVÊ as a layered tool that presents 

different levels of details depending on the desired resolution of information. More recently, 

others have applied the Bayesian Network approach to different pipeline threats (Shabarchin & 

Tesfamariam, 2016). 

Figure 3: Layered I nformation in MARVÊ for Communication to Different Decision 

Makers  

 

Source: DNV GL 

The large number of nodes in pipeline cases often results in large conditional probability tables 

that require both efficient design of Bayesian Network and computational techniques. B. John 

Garrick Institute for the Risk Sciences at UCLA, a partner in this proposal, has pioneered the 

development of efficient computation techniques.   
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CHAPTER 2:  
Pipeline External Corrosion  

Pipeline External Corrosion Threats  
There are three primary reasons for th e focus on the threat from pipeline external corrosion: 

potential cost and pipeline integrity consequences, regulatory requirements for external 

corrosion control systems, and challenges associated with quantitatively assessing pipeline 

external corrosion rates and the probability of failure . 

Potential Consequences  

The external corrosion of buried metallic on-shore piping has been identified as a serious 

threat to the mechanical integrity around the world (Sánchez & Kowalski, 2016). In the United 

States, a congressionally funded research project conducted between 1999 and 2001 

determined that the corrosion -related cost associated to the transmission pipeline industry was 

approximately $5.4 billion to $8.6 billion annually (Thompson & Beavers, 2006) (Corrosion 

Costs and Preventive Strategies in the United States, 2002). 

Difficulty of Control  

The requirement for an external corrosion control system is dictated by governmental 

regulations and is a part of the design specifications and operating parameters. The design of 

the external corrosion control system depends on pipeline design, operating factors (operating 

temperature and pressure, designed life), external environment, and geographic location. A 

proven method of external corrosion contro l of buried or submerged steel pipelines is the 

application of coating supplemented by cathodic protection (CP) (Standard Practice Control of 

External Corrosion on Underground or Submerged Metallic Piping Systems, 2013). When a 

balance between the coating condition and the level of CP is maintained, adequate external 

corrosion control can be achieved. External corrosion normally occurs when adequate balance 

between the coating condition and the cathodic protection level cannot b e established, and the 

rate at which external metal loss occurs is typically controlled by the environment in contact 

with the steel surface exposed at coating ñholidaysò (defects or holes) or under an unbonded 

section of coating. For buried pipelines, this environment is mainly controlled by soil, 

groundwater movement and composition, products from the electrochemical reactions 

(reduction and oxidation), and the type of coating. Numerous attempts have been made to 

establish which soil characteristics have significant impact on the rate at which metal loss 

occurs and also to develop predictive models for corrosion rates based on soil properties and 

other parameters. 

Between 1911 and 1957, the National Bureau of Standards (later called National Institute of 

Standards and Technology [NIST]  under the United States Department of Commerce1) 

conducted a large corrosion study that included the measurement of the external corrosion 

damage to metal coupons (strips used to evaluate a materialôs life expectancy) that were 

                                       
1 National Bureau of Standards is referred to in this report as NIST. See www.nist.gov .  

http://www.nist.gov/
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exposed to real-world environments. These coupons were neither coated nor catholically 

protected. In 1910, the United States Congress authorized NIST to study corrosion caused by 

stray electrolytic currents and possible methods of its mitigation. Stray current corrosion was 

originally assumed to be responsible for all corrosion of metals buried in soil. Field and 

laboratory investigations were conducted over a 10-year period. The results indicated that, 

though serious corrosion resulted from stray currents, significant corrosion also occurred when 

underground metallic structures were not in the presence of stray current. NIST continued the 

investigation to determine the cause of this corrosion and the relation between some 

properties of the soil and the c orrosion of buried metals. The depths of the deepest pits on 

approximately 90 ferrous specimens removed from each test site were used to derive the 

various relations to be considered later. Some of the conclusions from the NIST field tests 

having a direct bearing on the conduct and interpretation of burial tests are listed below 

(Logan, 1945):  

¶ Soils differ greatly in corrosiveness. 

¶ Rates of corrosion change with the period of exposure. This change is not the same for 

all soils. 

¶ The depth of the deepest pit on a corroded area is a function of the area exposed.  

Under apparently uniform soil conditions, the rates of corrosion of two specimens of the same 

material may differ widely.  

Prediction Challenges  

The research into mechanistic quantitative assessment of pipeline external corrosion rates and 

the probability of failure of a buried pipeline has not progressed significantly. The reason is the 

complex mechanism of external corrosion, numerous factors affecting it, and the unc ertainty in 

the knowledge of the variables.  

Due to the large complexity and uncertainty of many variables involved in the process of 

external corrosion, empirical models with advanced stochastic approaches have been 

considered to predict external corrosion risk in pipelines (Caleyo, On the Estimation of Failure 

Rates of Multiple Pipeline Systems, 2008) (Rivas, 2008) (Wang, 2014). For instance, Valor et 

al. modeled the for mation and growth of pits using nonhomogeneous Poisson process and 

nonhomogeneous Markov process, respectively. Results were compared with laboratory data 

using various materials. (Valor, 2007) Additionally, Caleyo et al., built mathematical 

approximations to generate probability distributions using Monte Carlo simulations on 

corrosion pits depth and growth in buried pipes with collected field data on depth of corrosion 

pits and soil properties of more than 250 excavation locati ons. (Caleyo, Probability distribution 

of pitting corrosion depth and rate in underground pipelines: A Monte Carlo study, 2009)  

(Velazquez, 2009) 

The results of the models described above are less conservative than the mechanistic and 

deterministic models currently available. Despite the use of some of the chemical and physical 

aspects of the external pipeline system in the model assumptions, these stochastic models (as 

acknowledged by those authors) do not account for other corrosion causing mechanisms as 

microbiologically influenced corrosion and stray current. As mentioned earlier, corrosion in 

external pipelines is a very complex and uncertain process, and to fully comprehend and 

predict failures it is imperative for a modeling approach that accounts for the various 
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mechanism and possible interactions between mechanisms. Additionally, available field data to 

calibrate models is often scarce.  

Pipeline External Corrosion Threat Control Methods  

External Corrosion Direct Assessment  

One of the current widely accepted pipeline external corrosion threat control s is based on a 

method developed by NACE International2 (NACE) called External Corrosion Direct Assessment 

(ECDA). The ECDA process is a valuable tool for pipeline risk management as it shows that 

pipeline external corrosion preventive measures (for example, coating, cathodic protection) are 

working properly. The ECDA process is based on four steps (Figure 4). Implementation of the 

ECDA process required an understanding of external corrosion and the NACE standard practice 

document NACE SP502 (Pipeline External Corrosion Direct Assessment Methodology, 2002). 

Figure 4: The Four Steps of the E xternal Corrosion Direct Assessment  Process  

 

Source: DNV GL 

Step 1: Pre -Assessment  

The pre-assessment step of the direct assessment process helps determine if the direct 

assessment process is feasible, identify relevant data and prioritize indirect inspection 

activities. This step requires gathering data and determining which data is most useful for the 

next step of the ECDA process.  

Step 2: Indirect Inspection  

The objectives of the indirect inspection step are to identify anomalies  such as water 

accumulation or holidays (defects or holes) and help prioritize dig sites that will be 

investigated during the direct examination step (step 3). This step must select dig sites that 

are representative of the entirety of the pipeline to avoid reaching incorrect conclusions.  

                                       
2 See www.nace.org. 

http://www.nace.org/
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Step 3 : Direct Examination  

The main objective of the direct examination step is to use direct pipeline inspection to verif y 

the assessments performed in step 1 and 2. This is often the most expensive part of the direct 

assessment process because it requires excavating the pipeline in multiple locations. Once 

direct inspection results are collected, it is important to check if  field results match modeling 

results.  

Step 4 : Post Assessment  

The main objectives of the post assessment step are to use data provided by steps 1 through 

3 to determine if mitigation is required (and prioritize mitigation actions), evaluate the entire 

ECDA process, and determine the time of the next ECDA.  

In - line Inspection  

Another widely accepted pipeline external corrosion threat control is called in-line inspection 

(ILI) and is also referred to as ñpiggingò. This practice use ñsmart pigsò tools that are sent 

down a pipeline and are propelled by the pressure of the flow , taking measurements as they 

travel through the pipeline. ILI provides insight into the state of the pipeline with great sp atial 

resolution. The size of the flaws detected by the ñsmart pigsò is often used to predict the 

remaining strength of the pipeline (In -Line Inspection of Pipelines, 2010). 

Value of the Multi -Analytic Risk Visualization Method  
The main goal of this project was to demonstrate a new risk assessment method called Multi-

Analytic Risk Visualization (MARVÊ), developed by DNV GL Strategic Research and Innovation. 

The method is novel as it uses Bayesian Networks to evaluate pipeline threats. Also, the 

MARVÊ platform pro vides a quantifiable and verifiable way to incorporate the effects on risk 

of mitigation actions and monitoring activities. The method is particularly well suited to help 

the ECDA and ILI processes because the method allows (1) mechanistic models and expert 

knowledge to be combined, and (2) these models to use any type of information to update risk 

results. 

How the Multi -Analytic Risk Visualization  Method  Complements External 
Corrosion Direct Assessment  

Step 1 : Pre -Assessment  

The ECDA pre-assessment step presents two challenges to pipeline operators: 

1. To successfully implement the ECDA process, pipeline operators must identify relevant 

data. This is difficult when data has been lost or is uncertain ( acknowledging that all 

data has a degree of uncertainty).  MARVÊ risk models use distributions as inputs, so 

the method can be run using uncertain and unknown data. When data is uncertain , 

then results are uncertain. This key point allows allocati on of resources to the correct 

data gathering activity. Through sensitivity analysis, MARVÊ determines which data 

should be gathered to reduce uncertainty the most. Focusing on the correct data 

gathering activities allows using resources to gather only data that is useful to the 

ECDA. 
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2. Prioritizing indirect inspection activities and deciding which inspection technique is the 

most useful to the ECDA is an important part of this step. MARVÊ models are displayed 

graphically by showing a network of causal relationships leading to pipeline failure due 

to external corrosion. This shows what could happen to the pipeline through cause -

consequences and helps pipeline operators decide which inspection technique is the 

most appropriate for step 2. It is not possible to make a generic list of the data required 

for the ECDA because degradation mechanisms evolve over time and even interact ; 

therefore, the data most useful to the ECDA change by location and over time. 

Consequently, the MARVÊ method uses the data is readily available and lets the model 

indicate what additional  data should be gathered to reduce direct assessment 

uncertainties. This allows resources to be focused on gathering useful data.  

Step 2 : Indirect Inspection  

The indirect inspection step also presents two challenges to pipeline operators: 

1. The main challenge in this step is to use all the pipeline data available. This includes 

general information collected during pre -assessment (step 1) and specific data collected 

during indirect inspection (step 2). Combining data in different format s and with 

different degrees of uncertainty is difficult but can be done using Bayesian inference. It 

requires making Bayesian Network models linking any type of plausibly available data 

with the physics of the pipeline, all linked though causal relationships. Consequently, 

MARVÊ models do not have the required sets of inputs. MARVÊ models use known 

parameters (with various degrees of certainties) to update unknown parameters 

through Bayesian inference. This allows pipeline operators to be sure that all data 

available has been used in the indirect assessment step of the direct assessment 

process, thus increasing the certainty that chosen dig sites are representative of the 

pipeline. 

2. A second challenge is determining the correct number of pipeline excavations needed to 

reduce pipeline external corrosion failure below an acceptable level. Bayesian inference 

can be used to calculate the optimal number of excavations required to reduce threats 

to the pipeline.  

Step 3 : Direct Examina tion  

When the predictions resulting from step 2 and the results from step 3 agree, planning 

mitigation actions or reassessment intervals (step 4) is straight forward. However, models and 

field results often disagree, and it is important to understand why. There are two causes for a 

mismatch between models and field results: incorrect data and unreliable models. MARVÊ 

models cam help address these challenges in the following ways: 

1. Discovering incorrect data is an important part of any risk assessment program. For 

example, the direct examination step might provide wall loss thickness data that are 

inconsistent with predicted values. This is particularly useful because this new evidence 

(measured external wall loss) can be propagated though MARVÊ's Bayesian Network 

external corrosion threat model, helping to identify the erroneous data.  

2. Sometimes a discrepancy between modeled results and field data comes from the 

threat models themselves. No model is perfect, and even though the MARVÊ external 

corrosion model created during this project is based on the latest understanding of 
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external corrosion, new knowledge on corrosion is generated by the scientific 

community every year. Consequently, MARVÊ models are able to learn from mistakes. 

No model should make the same error twice, thus improving models' reliability for the 

future ECDAs. 

Step 4 : Post Assessment  

The MARVÊ method has two features helping the final step of the ECDA process: 

1. The first feature is the MARVÊ external corrosion threat model visualization interface. 

Risk management is being done effectively using subject matter experts, but the impact 

of such risk management is not effectively communicated to all the stakeholders. 

Visualization of risk management of complex aging systems has been done, but at best 

it was simplistic, useful for some idealized systems, not real, complex systems. The 

MARVÊ visualization tool extracts information out  of the data generated by the model 

and makes it easy to find useful information (probability of failure, mode of failure, 

changes over time) by displaying this information on a touch screen interface. The 

MARVÊ graphical representation is designed to allow hundreds of parameters to 

connect, making complex problems easy to understand, and can be used to decide 

what is the best course of action needed to mitigate the risk of failure.  

2. Forecasting is an area where MARVÊ models can have the most impact. Determining 

the appropriate date of the next direct assessment is a difficult task : i f the next direct 

assessment is done too late, catastrophic failures might occur ; but i f the next direct 

assessment is done too soon, resources that could be spent on risk management will be 

wasted gathering data.  

In -Line Inspection  

When using ILI results, it is tempting to make a simple linear projection to forecast the state 

of the pipeline in time. Such  a linear projection is often used to decide when to do the next 

inspection. A simple linear interpretation of ILI results can lead to two scenarios.  

1. If corrosion was high in the early life the pipeline and then slowed down over time 

(depicted by the red line in Figure 5), then the next ILI will be done too early, s ince the 

prediction (depicted by the grey line) shows higher wall loss than the reality. This 

scenario is safe because the next ILI will be performed before it is needed. However, 

this scenario can lead to negative consequences:  

¶ When predictions are repeatedly worse than what really happens, they can lead to a 

false sense of safety over time. 

¶ Spending too many resources on pipelines that do not require inspections can drain 

resources from other pipelines that do.  
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Figure 5: Safe Prediction Can Lead to Unsafe Practices  

 

Source: DNV GL 

2. The opposite scenario is also problematic. If corrosion is low in the early life of a 

pipeline and then increases over time (depicted by the red line in Figure 6), then the 

next ILI would be done too late since the prediction (depicted by the grey line) shows 

less wall loss than what actually occurred. 
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Figure 6: Unsafe Predic tion Can Lead to Pipeline Failure  

 

Source: DNV GL 

The MARVÊ method combines ILI data with environmental data to predict the evolution of the 

corrosion rate over time, thus using resources on the most useful data while reducing overall 

threat to the pipel ine. 

Modeling Pipeline External Corrosion Threat with Bayesian 
Networks  

The Issue  

Many engineers are not inclined to trust corrosion models because model results are often 

inconsistent with field results. There are several reasons for these inconsistencies. First, no 

single model is accurate in all situations. Simple empirical models work reasonably well in the 

conditions for which they have been developed, but provide uncertain results outside of these 

conditions. Also, complex mechanistic models will only work as long as all applicable 

mechanisms are entirely understood, which is rare for complex aging systems. Therefore, no 

risk model can be used indiscriminately, and engineers should be aware of each model's 

limitation.  

Second, the input data used to run the models is never exact; often some of the data required 

to run the models is missing. Engineers should be aware of the uncertainty associated with 

each parameter that is used by the model. In some cases, the uncertainty will not affect the 

final results, while in other cases even a small amount of uncertainty is unacceptable.  
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Third, model developers often lack the operator's knowledge of the system . Practical 

knowledge of a specific system can be hard to quantify, since it is often in the  form of cause-

consequence relationships (for example, ñif X happens Y is likely"). Quantifying this knowledge 

is valuable and necessary. 

Finally, as systems age, the probability of failures increases. The number of failure s, however, 

does not follow a simple easily predictable linear progression. The number of failures follows 

the so-called "bath-tub curve" in which the number of failures is relatively low for most 

systems during their normal life, until one day, the number and severity of failures increase 

suddenly and unexpectedly. 

Bayesian Networks are used to solve these issues. A Bayesian Network is a type of 

probabilistic graphical model, which can simultaneously represent many relationships between 

variables in a system. The graph of a Bayesian Network contains nodes (representing 

variables) and directed arcs that link the nodes. The arcs represent the relationships of the 

nodes. Unlike traditional statistical models, Bayesian Networks do not have to distinguish 

between independent and dependent variables. Rather, a Bayesian Network approximates the 

entire joint probability distribution of the system under study. This allows the researcher to 

carry out "omnidirectional inference," that is, to reason from cause to effect (simulation), or 

from effect to cause (diagnosis), all within the same model. 

A Bayesian Network is particularly well suited to assess pipeline threats for several reasons:  

¶ The graphical representation of Bayesian Networks shows all cause-consequence 

relationships leading to pipeline failure, making the best course of action to reduce the 

probability of failure  clear to engineers. 

¶ While a problem in most modeling framework s, data uncertainty is not a problem for 

Bayesian Network which have been developed to reason under uncertainty. 

Consequently, the lack of data is not a problem for the MARVÊ method as the models 

can run with uncertain and missing data.  

¶ The model predicts all possible outcomes rather than one outcome. The variability in 

the possible outcomes arises from uncertain data. When certain data is added to the 

model, outcomes have low variability; when uncertain data is added to the model, 

possible outcomes have a higher variability. Variability of the outcome helps determine 

the best course of action. In a high risk /high variability situation, gathering more 

information is the most appropriate course of action (risk might be reduced simply by 

gathering data). On t he other hand, in a high risk/ low variability situation, gatherin g 

data will not help so risk mitigation in the best course of action. Understanding 

variability can also help with deciding what data should be gathered and what data is 

not necessary, thus saving on data gathering cost. 

Original Pipeline External Corrosio n Model  

External corrosion of buried pipelines is the result of a complex set of interactions between the 

soil, groundwater, coating, cathodic protection, pipeline design and construction, and material 

related factors, such as mill scale and welds. The eventual failure can occur either through 

gradual leakage of products or the burst of a pipeline depending on the flaw size, the fracture 

properties of the material, and internal pressure. The external corrosion Bayesian Network 
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developed by DNV GL assesses the probability of failure of a buried pipeline due to external 

corrosion. A schematic layout of the model structure is shown in Figure 7: Overview of the 

Original External Corrosion Model. 

Figure 7: Overview of the Original E xternal Corrosion Model  

 

Source: DNV GL 

The model is divided into six modules: 

1. Cathodic Protection (CP): The CP module corresponds to the probability distribution of 

the level of CP applied to the pipeline based on the information about CP history, close-

interval potential survey data, soil properties, mill scale, coating type (to account for 

shielding), wet and dry cycles, stray currents, and formation of galvanic cells due to 

diverse characteristics of the steel surface or the soil. The level of CP influences the 

external corrosion through coating damage and the chemistry developed under the 

damaged coating. 

2. Coating Damage: The Coating Damage module estimates the probability that the 

coating has damaged in a given section. Coating damage depends on several factors, 

such as soil stress, cathodic disbondment (loss of adhesion between coating and the 

metal substrate), age of coating, manufacturing defects, drainage, topography, soil 

type, coating type, operating temperature, etc.  

3. Chemistry under Damaged Coating: The environment that is generated under the 

damaged coating is quantified in the Chemistry under the Damaged Coating. That 

environment depends on the CP potential, coating permeability, the soil properties such 

as total dissolved solids, oxygen availability, pH, and soil carbon dioxide pressure.  

4. Corrosion rates: The Corrosion module assesses the probability distributi on of corrosion 

rates (uniform and localized corrosion). The severity of the corrosion rates will depend 

on the concentration of aggressive species such as chloride ions, sulfate ions, and 

bacteria.  

5. Remaining Strength: The Remaining Strength module indicates the probability 

distribution of the estimated bursting pressure at which the pipeline will fail.  

6. External corrosion failure: Finally, the External Corrosion Failure module estimates the 

probability of failure due to external corrosion for a given pipe section at one year 

intervals. When the operating pressure exceeded the bursting pressure, the pipeline is 

assumed to fail. 

The full Bayesian network resulting from the above modules is more complex and is shown in 

Figure 8. 
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Figure 8: Complete Original Bayesian Network Model of External Corrosion Threat  

 

Source: DNV GL   
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New Bayesian Network Threat Model for Pipeline External Corrosio n 

Industry Partner Requirements  

After discussion with the industry partner and other pipeline operators, three major 

modifications of the pipeline external corrosion Bayesian network threat model were required:  

1. Simplification of the model: parts of the ori ginal model used information that is not 

used by United States pipeline operators and therefore should be removed from the 

model (Swati, Sanchez, Guan, Ayello, & Sridhar, 2015). 

2. Ability to use all data available: the model should be able to use all data available to 

United States pipeline operators that can influence external corrosion. 

3. Conversion to British Units: nodes in the model should be modified from the 

international system unit to more  commonly used British Units. 

New Model Overview  

Although the physics of the pipeline external corrosion threat model are very similar to the 

original model ( that is, cause-consequence relationships), the structure of the model (groups 

of nodes) has been simplified to fewer groups, as shown in Figure 9: 

1. Coating damage module 

2. Corrosion rate module 

3. Failure module 

4. Risk of failure module 

Figure 9: Overview of the Modified  External Corrosion Model  

 

Source: DNV GL  
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Figure 10 : Bayesian Network  Model  for G as Pipeline External Corrosion  Threat  

 

Source: DNV GL  
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New Model Details  

Risk of Failure Module 

The risk module was added to the original external corrosion pipeline threat model because 

the High Consequence Area (HCA) is part of the data provided by industry partner. HCAs are 

commonly found close to populated areas (for example, a shopping center), but in some 

instances, rivers, streams, lakes, and tribal land might be considered as an HCA. The risk 

module adds information to the probability of failure calculated by the previous module and 

results in a risk score. The model still allows the user to see the calculated probability of 

external corrosion. The risk of failure depends on the type of failure evaluated in the previous 

model (pipeline burst has more impact than leaks) and the presence of a HCA (HCA has more 

effect on the risk of  failure than no HCA). Technical Advisory Committee members requested 

that the risk module be very simple since pipeline operators have their own ways to assess 

consequence of failures. 

Figure 11 : Pipeline External Corrosion Threat Model: Risk Module  

 

Source: DNV GL 

Model inputs are: 

¶ HCA: Probability that a pipe section is in an HCA. The MARVÊ method could also be 

used to calculate the potential impact circle of a pipeline failure, but this is out of the 

scope of this project.  

¶ Failure: This node calculates the probability of pipeline failure ï a leak or a burst 

pipeline ï due to external corrosion. However, even this node can be an input. If it is 

known that a pipe section failed, it is possible to enter this evide nce to infer other 

inputs. The current limit value of wall loss is 80 of original pipeline wall thickness. 

Therefore, the model could predict that a pipeline will leak before it suffers a more 

catastrophic pipeline burst (Figure 12). 
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Figure 12 : Example of Evolution of Leak (Yellow) and Burst (Red) Probabilities as a 

Function of Time. Green Represents the Probability of No Failure.  

 

Source: DNV GL 

Table 1: Description of the Nodes in the Risk Module of the Pipeline External 
Corrosion Threat Bayesian Network Model  

Node Description States Causes Consequences 

Risk of failure 

Risk ranking of 

the pipeline 

sections 

High 

Medium 

Low 

HCA 

Failure 
- 

HCA 
Presence of an 

HCA 

Yes 

No 
- Risk of failure 

Failure 

Probability of 

pipeline section 

leak or burst 

during the 

selected year 

Leak 

Burst 

No Failure 

Failure module 
Risk of failure 

module 

Source: DNV GL 
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Probability of Failure Module 

The probability of failure module calculates the probability that a pipeline  section will fail due 

to external corrosion (not to be mistaken with frequency of failure). The new model now 

differentiates between leak and burst, allowing the model to predict the probability that a 

pipeline section will leak due to external corrosion,  burst due to external corrosion , or not fail 

at all (other threat s excluded). The addition of all three probabilities must be equal to one (or 

100 percent). The module is shown in Figure 13. 

Figure 13 : Pipeline External Corrosion Threat Model: Pipe Section Failure Module  

 

Source: DNV GL 

The module first uses the localized corrosion rate and the probability of coating damage to 

calculate a distribution of external corrosion flaw sizes. Then, the module uses software 

developed by DNV GL to calculate the bursting pressure (Jaske, Beavers, & Harle, Effect of 

Stress Corrosion Cracking on Integrity and Remaining Life of Natural Gas Pipelines, 1996). If 

the bursting pressure is lower than the operating pressure , the pipeline may burst. If wall loss 

is higher than a value of wall thickn ess recommended by an industry partner, then the pipeline 

may leak.  

The inputs of the module include:  

¶ Operating Pressure: The pipeline operating pressure is the distribution of pipeline 

operating pressure over the year studied for a pipe section. The pipe line operating 

pressure has an impact on estimating pipeline burst due to external corrosion. The 

operating pressure interval range is 400 psi to 1,000 psi. 

¶ Bursting Pressure: The distribution of the bursting pressure was calculated using a 

fracture mechanics model called CORLAS (Jaske, Vieth , & Beavers, Assessment of 

Crack-Like Flaws in Pipelines, 2002), developed by DNV GL. The distribution of the 

bursting pressure was made using Monte Carlo simulation to derive the conditional 

probability distribution tables of bursting pressure for a set of diameter, wall thickness, 

yield strength, and flaw dimensions (external corrosion flaw depth and length).  

¶ Flaw depth: This node corresponds to the depth of the external corrosion flaws. P ipeline 

flaw due to external corrosion will grow only if the corrosion rate allows it and the 

pipeline coating has been damaged. Figure 14 shows an example of corrosion flaw size 

distribution growing for 10 years after the pipeline coating has been damaged. In the 

first year, there is a high certainty that the wall loss is negligible and on year 10, the 

flaws have grown both in size and in u ncertainty. 

 




